

LANDSLIDE RISK ASSESSMENT

PROJECT:

Proposed Additions/Alterations

Site Address:

17 Roslyn Avenue
Kingston Beach,
TAS
7050

CLIENT:

Kat McGuire &
Michael Middleton

DATE:

7/01/2026

DOCUMENT CONTROL

Document Prepared By:

Geo-Environmental Solutions Pty Ltd

ABN 24 115 004 834
29 Kirksway Place
Battery Point
TAS, 7004

P: +61 3 6223 1839
E: office@geosolutions.net.au
W: geosolutions.net.au

DOCUMENT CONTROL		
Report Title:	17 Roslyn Avenue, Kingston Beach TAS 7050	
Project Type:	Landslide Risk Assessment	
Client:	Kat McGuire & Michael Middleton	
Project Job Number:	12381	
Revision Version:	V01	
Date:	16/01/2026	
Approved By:	V.Gupta	
	Signature:	Date
		16/01/2026

This document is only to be used by the commissioning client and for the purposes of which this document was prepared. No responsibility is accepted for use of any part of this report in any other context or for any other purpose by a third party.

Disclaimer: The author does not warrant the information contained in this document is free from errors or omissions. The author shall not in any way be liable for any loss, damage or injury suffered by the User consequent upon, or incidental to, the existence of errors in the information.

1	INTRODUCTION	5
2	OBJECTIVES.....	6
3	SITE DETAILS	6
3.1	PROJECT AREA LAND TITLE	6
3.2	AUSTRALIAN BUILDING CODE BOARD	6
3.3	THE TASMANIAN BUILDING REGULATIONS 2016.....	7
3.4	INTERIM PLANNING SCHEME LANDSLIDE OVERLAY.....	7
3.5	SITE AND PROPOSED WORKS	7
3.5.1	<i>Development & Works Acceptable Solutions.....</i>	10
3.5.2	<i>Landslide Hazard Code (LHC).....</i>	10
3.5.3	<i>Development Performance Criteria.....</i>	10
4	SITE MAPPING	10
4.1	GEOLOGICAL MAPPING	10
4.2	SITE GEOMORPHOLOGY	10
4.3	SITE INVESTIGATION	13
5	LANDSLIDE HAZARD ANALYSIS	14
5.1	LANDSLIDE CHARACTERISTICS	14
5.1.1	<i>Frequency Analysis</i>	14
5.2	RISK ANALYSIS	15
5.2.1	<i>Risk to Property</i>	15
5.2.2	<i>Risk to Life</i>	16
5.2.3	<i>Social Risk</i>	17
6	CONCLUSIONS AND RECOMMENDATIONS	18
7	LIMITATIONS STATEMENT	19
8	REFERENCES	20
APPENDIX 1 – ACCEPTABLE SOLUTIONS		21
APPENDIX 2 – QUALITATIVE RISK ASSESSMENT TABLES.....		22
APPENDIX 3 - AUSTRALIAN GEOMECHANICS SOCIETY (AGS) LANDSLIDE RISK.....		23
APPENDIX 4 - QUALITATIVE RISK ASSESSMENT		29

FIGURES

FIGURE 1 - LOCATION OF THE SITE (HIGHLIGHTED IN RED)	5
FIGURE 2 – LANDSLIDE OVERLAY NEAR THE SITE (THE LIST)	8
FIGURE 3 - SITE PLAN SHOWING PROPOSED WORKS.	9
FIGURE 4 - MAPPED GEOLOGY (SOURCE: MRT 1:25,000)	11
FIGURE 5 - SLOPE ANGLE MODEL DEVELOPED FROM KINGBOROUGH 2022 LiDAR DATA.....	12
FIGURE 6 – POSSIBLE SCENARIOS OF LANDSLIP	14
FIGURE 7 - SOCIETAL RISK GRAPH OF PROBABILITY OF FATALITIES VS NUMBER OF FATALITIES	17

TABLES

TABLE 1 SOIL PROFILES.....	13
TABLE 2 FREQUENCY ANALYSIS FOR LANDSLIDE HAZARDS 1 & 2	14
TABLE 3 CONSEQUENCE ANALYSIS FOR LANDSLIDE HAZARDS – PROPERTY	15
TABLE 4 CONSEQUENCE ANALYSIS FOR LANDSLIDE HAZARDS – LIFE	16

1 INTRODUCTION

Geo-Environmental Solutions Pty Ltd (GES) were contracted by Stuart Smith Architecture and Design on behalf of Kat McGuire & Michael Middleton (the client) to provide a geotechnical assessment to assess a landslide risk for a proposed alterations/additions at Kingston Beach, which lays within the Kingborough Interim Planning Scheme.

The proposed works are located at cadastral title (CT 74692/2) at 17 Roslyn Ave, Kingston Beach, TAS 7050 (Figure 1). GES are to undertake this geotechnical assessment relating to the proposed development in conjunction with the requirements of the Landslide Hazard Code, part of the Tasmanian Interim Planning Scheme. GES have written this report with reference to the Australian Geomechanics Guidelines (AGS 2007).

GES have undertaken this assessment using previous site observations and investigation, photographs and publicly available datasets in the construction of this report. Estimations are determined by approximation with regional information applied where appropriate to site specific information.

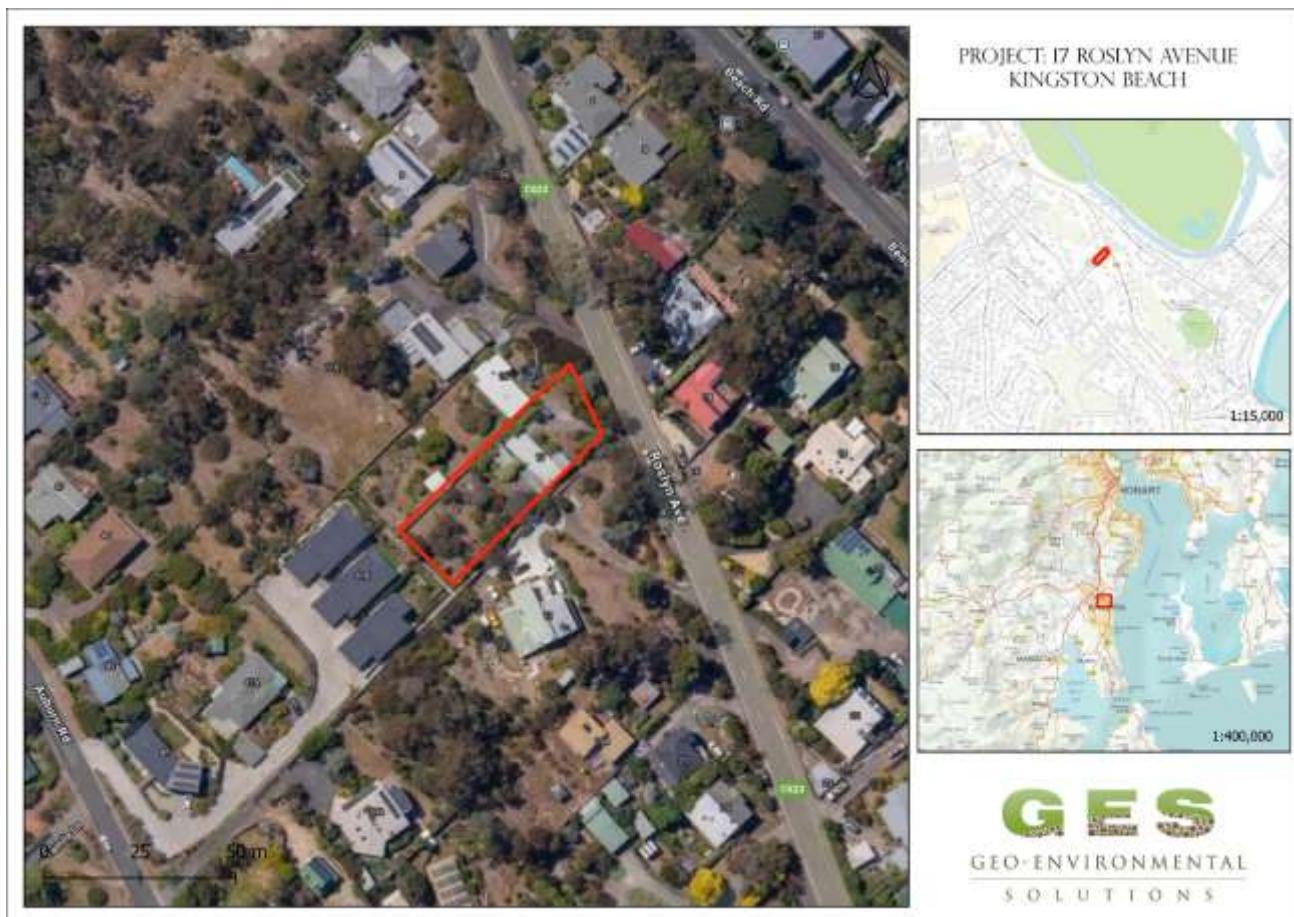


Figure 1 - Location of the site (highlighted in red)

2 OBJECTIVES

The objective of the site investigation is to:

- Conduct a landslide risk assessment of the proposed development excavations with reference to the Australian Geomechanics Society (AGS) '*Landslide Risk Management (2007) guidelines*'.
- Identify which planning scheme codes need to be addressed in terms of landslip and identify the relevant performance criteria relevant to the project which need addressing;
- Conduct a site risk assessment for the proposed development ensuring relevant performance criteria are addressed.
- Where applicable, provide preliminary recommendations on earthworks to ensure safe slope management.

3 Site Details

3.1 Project Area Land Title

The land studied in this report is defined by the following title reference:

- CT – 74692/2

This parcel of land is referred to as the 'Site' and/or the 'Project Area' in this report.

3.2 Australian Building Code Board

This report presents a summary of the overall site risk to landslide hazards. This assessment has been conducted for the year 2075 which is representative of a 'normal' 50-year building design life category.

Per the Australian Building Code Board (ABCB 2015), when addressing building minimum design life:

'The design life of buildings should be taken as 'Normal' for all building importance categories unless otherwise stated.'

As per Table 3-1, the building design life is 50 years for a normal building.

Table 3-1 Design life of building and plumbing installations and their components

Building Design Life Category	Building Design Life (years)	Design life for components or sub systems readily accessible and economical to replace or repair (years)	Design life for components or sub systems with moderate ease of access but difficult or costly to replace or repair (years)	Design life for components or sub systems not accessible or not economical to replace or repair (years)
Short	1 < dl < 15	5 or dl (if dl<5)	dl	dl
Normal	50	5	15	50
Long	100 or more	10	25	100

Note: Design Life (dl) in years

3.3 The Tasmanian Building Regulations 2016

Building in hazardous areas

As outlined in the Consumer, Builder and Occupational Services (CBOS) web site:

[Building in hazardous areas](#)

Hazardous areas include areas which are bushfire prone, comprise reactive soils or substances, or are subject to coastal erosion, coastal flooding, riverine flooding, and landslip.

Division 5 - Landslip. Section 59. Landslip hazard areas

- For the purposes of the Act, land is a landslip hazard area if –
 - the land is shown on a planning scheme overlay map as being land that is within a landslip hazard area; and
 - the land is classified as land within a hazard band of a landslip hazard area.
- For the purposes of the definition of *hazardous area* in section 4(1) of the Act –
 - classification under a landslip determination as being land that is within a hazard band of a landslip hazard area is a prescribed attribute; and
 - a landslip hazard area is a hazardous area.

3.4 Interim Planning Scheme Landslide Overlay

The site is within the low landslide overlay due the slopes of 11-20 degrees (Figure 2).

3.5 Site and Proposed Works

The project area is located in Kingston Beach, approximately a 20-minute drive from Hobart City. The site is approximately 1170 m² in size and is currently occupied by an existing dwelling.

The proposed works involve additions and alterations to the existing dwelling. The extensions will be located on the southwest side of the site. To accommodate the new construction, cut and fill works will be required on the sloping terrain, and the proposed cuts will be supported by retaining walls. The existing driveway will be resurfaced and reconstructed on the northeast side of the site, with access from Roslyn Avenue.

Plans have been provided to GES from Stuart Smith Architecture & Design (Project Number: 23007, Dated: 17 October 2025). The plans are presented in Figure 3.

Figure 2 – Landslide Overlay near the Site (The List)

Figure 3 - Site Plan showing proposed works.

3.5.1 Development & Works Acceptable Solutions

Where applicable, the need for further performance criteria compliance is outlined in Appendix 1.

3.5.2 Landslide Hazard Code (LHC)

Given that the proposed development resides in the low Landslip Hazard Area and the existing excavation works are in excess of 100m³ and there are no acceptable solutions for buildings and works, other than minor extensions, or major works in a low Landslip Hazard Area, the E3.7.1 P1 and E3.7.3 P1 performance criteria will need to be addressed.

3.5.3 Development Performance Criteria

The following performance criteria need to be addressed:

- *E3.7.1 P1*
- *E3.7.3 P1*

4 Site Mapping

4.1 Geological Mapping

The geological map for the site has been presented in Figure 4. Based on the MRT 1:25,000 Mineral Resources Tasmania (MRT) Geology of Tasmania (Map Sheet: Taroona), the site geology comprises of the following geological units:

- **(Map Unit – Pua):** Generally unfossiliferous glaciomarine interbedded non-fissile and fissile siltstone and silty sandstone, with common bioturbation and limestones, rare pebbly beds and fossiliferous beds; top beds of laminated grey to brown siltstone with thin beds of well sorted sandstone (Abels Bay Formation).

4.2 Site Geomorphology

The site is located on the northeastern extent of Boronia Hill. The natural slopes across the site range from gentle to moderately steep. Slope angles and aspects in the area of the proposed development vary but are typically between 5° and 20° toward the northeast. The slope steepens to more than 30° along the eastern side of the site.

The site has an elevation of approximately 44 m AHD along the southwest boundary, which decreases to around 33 m AHD along the northeast boundary. To provide a visual representation of the on-site slope conditions, a slope angle map was produced using QGIS software, based on the Kingborough 2022 LiDAR dataset. Refer to Figure 5 for a detailed depiction of the slope angles observed on the site.

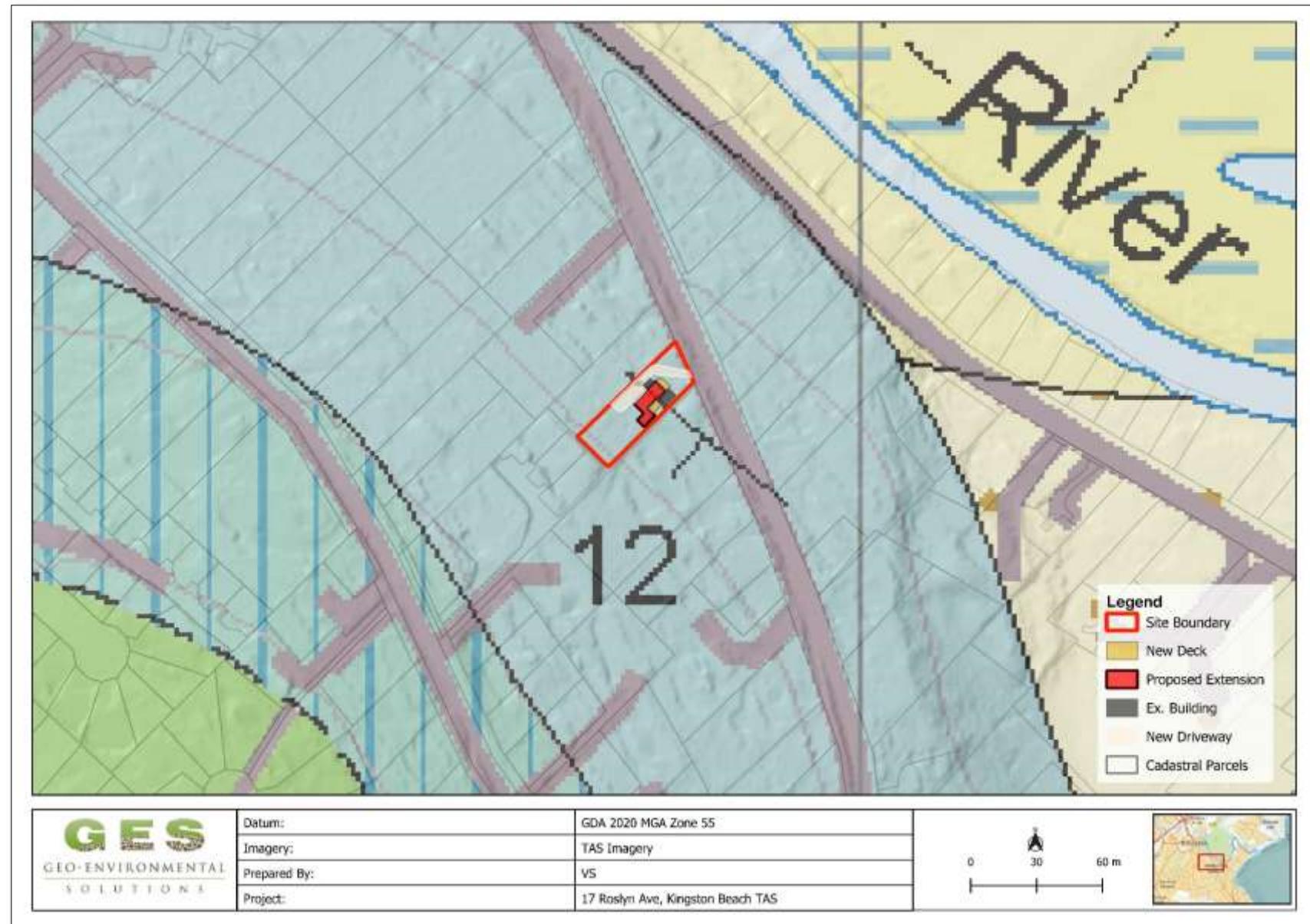


Figure 4 - Mapped Geology (Source: MRT 1:25,000)



Figure 5 Slope angle model developed from Kingborough 2022 LiDAR data.

4.3 Site Investigation

A site investigation was conducted on 17/11/2025 by GES for the purpose of collecting data and observing the site for this report. Summary of soil profile within a proposed building envelope presented in Table 1. Soils on the site are developing from Permian sediments. The clay fraction is likely to show moderate ground surface movement. It is recommended the foundations be placed on the underlying bedrock to minimize the potential for significant foundation movement.

Table 1 Soil Profiles

BH 1 Depth (m)	BH 2 Depth (m)	USCS	Description
0.00-0.30	0.00-0.50	SM	Silty SAND : trace of gravel, dark grey, brown, slightly moist, medium dense,
0.30-0.70		CL	Silty CLAY : trace of gravel, medium plasticity, pale brown mottled grey, slightly moist, stiff,
0.70-0.90	0.50-0.60	GC	Clayey GRAVEL : yellow, grey dry very dense, refusal on rock/boulder.

5 Landslide Hazard Analysis

5.1 Landslide Characteristics

Based on the slope characteristics including site geology, slope geometry and slope angles, and site observations, the following scenarios have been identified as potential slope failure mechanisms for the site:

- **Scenario 1** – Shallow slide failure in fill batters immediately below the proposed dwelling with potential regression; and
- **Scenario 2** – Shallow translational slide within shallow residual soils in cuttings above the proposed dwelling, caused by oversteepening of natural soil slopes, with no allowance for drainage.

5.1.1 Frequency Analysis

Table 2 presents the frequency analysis for the identified slope failure mechanisms for proposed excavation on the site. Terminology used is in accordance with the Australian Geomechanics Society (AGS) guidelines for landslide risk management (2007a,b,c,d).

Table 2 Frequency analysis for landslide hazards 1 & 2

Scenario	Failure Mechanism	Unit Affected	Observed in the field	Potential Size	Potential Speed	Water Content	Likelihood
Scenario 1	Shallow slide failure within natural soils beneath, or immediately downslope of the proposed building area	Residual Soils/Fill	No	Small	Very slow to moderate	Wet /Saturated	Possible
Scenario 2	Shallow translational slide	Residual Soil	No	Very small to small	Slow to rapid	Wet	Possible

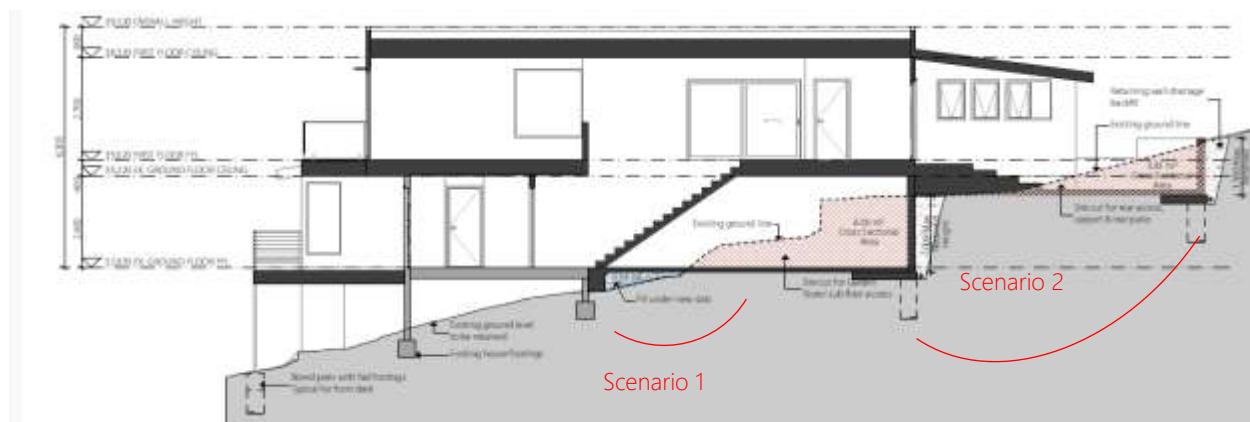


Figure 6 – Possible scenarios of landslip

5.2 Risk Analysis

5.2.1 Risk to Property

Risk has been considered for the proposed development pre- and post-construction. Based upon the proposed excavation without suitable management of the site is considered **Moderate to Low** risk. Treated risk for Scenario 1 and Scenario 2 may reduce the risk to **Low** (Table 3).

Table 3 Consequence analysis for landslide hazards – Property

Scenario	Issue	Current Risks			Recommended Risk Treatment	Level of Risk post Treatment
		Likelihood of occurrence	Consequence to property	Level of Risk to Property		
Scenario 1	Shallow Translation al Slide	Possible	Medium	Low	<ul style="list-style-type: none"> It is recommended the foundations be placed on the underlying bedrock to minimize the potential for significant foundation movement. Any proposed fill pad for the dwelling must be keyed and/or benched into the natural hillslope and placed directly on the underlying bedrock. Good hillside construction practices should be adopted as per Australian Geoguide LR8; All earthworks should be conducted in accordance with AS3798-2007 and a sediment and erosion control plan should be implemented on the site during and after construction. It is recommended cut batters surfaces to be protected from erosion using an erosion control blanket, top-dressed with topsoil, and revegetated to improve soil stability. 	Very Low
Scenario 2	Shallow Slide Failure	Possible	Minor	Moderate	<ul style="list-style-type: none"> It is recommended the foundations be placed on the underlying bedrock to minimize the potential for significant foundation movement. All earthworks should be conducted in accordance with AS3798-2007 and a sediment and erosion control plan should be implemented on the site during and after construction. Cut slopes to the west of the development should be constructed using the following slope angles: <ul style="list-style-type: none"> Residual Soils - 1V: 2 H; and Rock - 1V: 1H. Alternatively, slopes can be retained using suitably designed retaining walls. All cuttings should include a cut-off v-drain above the cutting and a graded toe drain immediately below the cutting face. It is recommended cut batters surfaces to be protected from erosion using an erosion control blanket, top-dressed with topsoil, and revegetated to improve soil stability. 	Low

5.2.2 Risk to Life

Risk to life is considered acceptable given the treated likelihood and consequence of a shallow slide failure above the proposed structure and a shallow failure below the proposed works (Table 4). Societal risk has not been assessed as part of this report.

Table 4 Consequence analysis for landslide hazards – Life

Hazard	Scenario 1	Scenario 2
Factor	Shallow Translational Failure	Shallow Slide Failure
Likelihood	Unlikely	Unlikely
Indicative Annual Probability	0.001	0.001
Probability of Spatial Impact	0.2	Unlikely to affect foundations. 0.05
Probability of Not Evacuating	Residual soils should exhibit signs of stress (tension cracking prior to failure), resulting in time for evacuation and/or remediation. 0.1	Residual soils/fill should exhibit signs of stress (tension cracking prior to failure), resulting in time for evacuation and/or remediation. 0.08
Vulnerability	0.05	0.05
Risk for Person Most at Risk	1×10^{-6}	2×10^{-7}
Risk Evaluation	Acceptable	Acceptable

Note 1: It has been assumed that each person has an equal probability of death for each of the hazards. This is a conservative estimate of the risk to life.

5.2.3 Social Risk

The Societal Risk Graph plot presented in Figure 7. showing the estimated individual risks for scenarios 1 and 2 as presented in Figure 6 (outlined in the AGS 'Landslide Risk Management Concepts and Guidelines', 2000). The risks are estimated based on people in the structure spending up to 12 hours per day in internal areas the property.

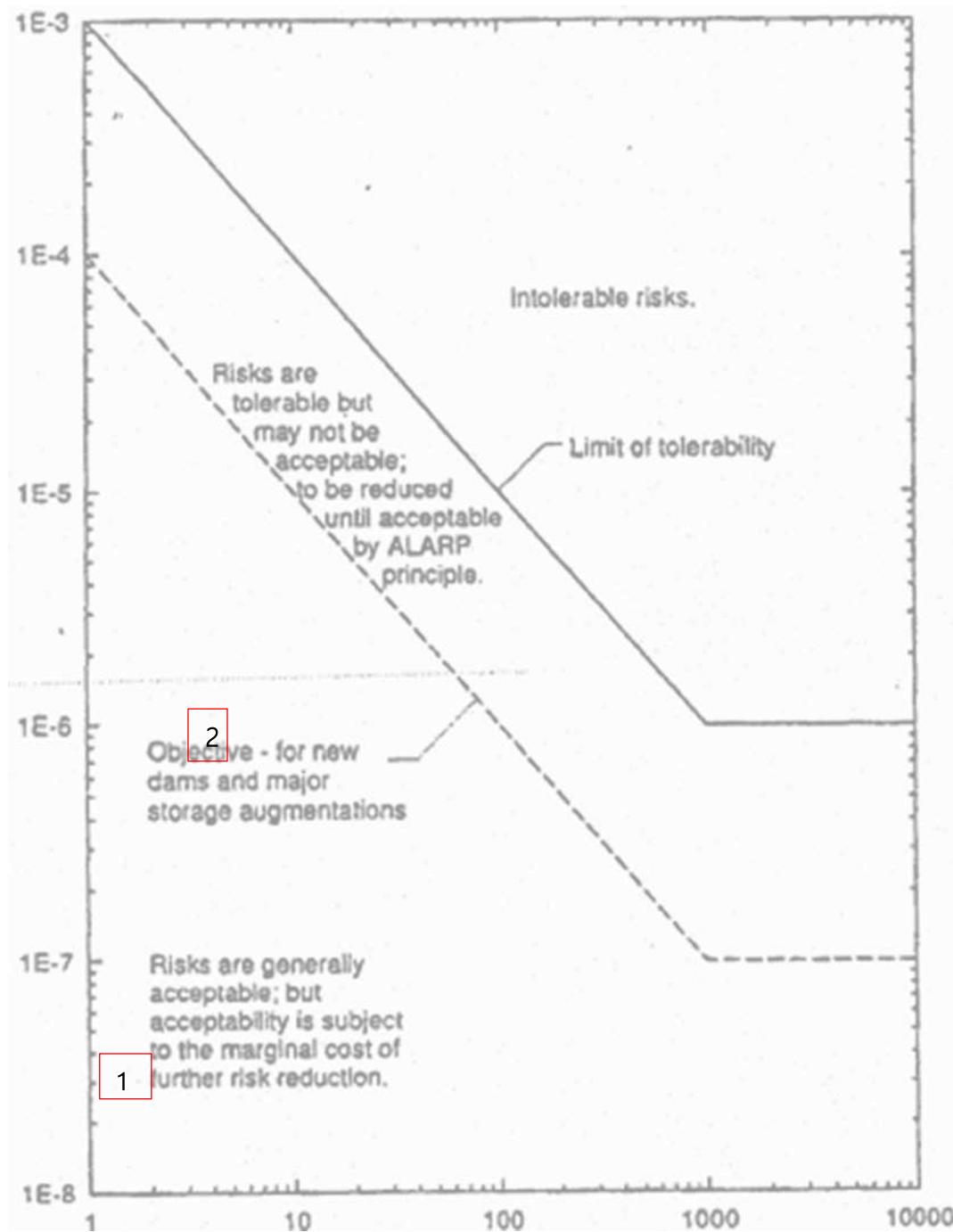


Figure 7 - Societal Risk Graph of Probability of fatalities vs Number of fatalities

6 Conclusions and Recommendations

Based on the observations made during the site visit and the outcome of the investigation, landslide risk assessment, the following conclusions are made:

- It is recommended the foundations be placed on the underlying bedrock to minimize the potential for significant foundation movement and be adequately designed in accordance with good hillside construction practices as outlined in the Australian Geomechanics Society (AGS) Geoguide LR8.
- Any proposed fill pad for the dwelling must be keyed and/or benched into the natural hillslope and placed directly on the underlying bedrock
- Cutting batters to the proposed works should be constructed using the following slope angles:
 - Residual Soils - 1V: 2 H; and
 - Rock - 1V: 1H.
- Alternatively, slopes can be retained using suitably designed retaining walls, free - draining walls.
- Aggregate toe drains have been included into the design along the base of all cuttings. A cut-off drain is recommended above the development to intercept surface water away from the proposed development and any cutting/retaining wall faces.
- It is recommended cut batters surfaces to be protected from erosion using an erosion control blanket, top-dressed with topsoil, and revegetated to improve soil stability.
- All earthworks should be conducted in accordance with AS3798-2007 and a sediment and erosion control plan should be implemented on the site during and after construction.
- Good hillside construction practices should be adopted as per Australian Geoguide LR8;
- The proposed works will not cause or contribute to landslide on the site, adjoining land provided the recommendations are adhered to.
- It is concluded that the proposal is compliant with the landslide hazard code of the Kingborough Council Interim Planning Scheme 2015 (Code E3).

GES should be contacted immediately should conditions greatly differ to that which are stated in this report.

7 LIMITATIONS STATEMENT

This Assessment Report has been prepared in accordance with the scope of services between Geo-Environmental Solutions Pty. Ltd. (GES) and 'the Client'. To the best of GES's knowledge, the information presented herein represents the Client's requirements at the time of printing of the Report. However, the passage of time, manifestation of latent conditions or impacts of future events may result in findings differing from that discussed in this Report. In preparing this Report, GES has relied upon data, surveys, analyses, designs, plans and other information provided by the Client and other individuals and organisations referenced herein. Except as otherwise stated in this Report, GES has not verified the accuracy or completeness of such data, surveys, analyses, designs, plans and other information.

8 REFERENCES

AGS (2007a). Guideline for Landslide Susceptibility, Hazard and Risk Zoning. Australian Geomechanics, Vol 42 No 1 March 2007

AGS (2007b). Commentary on Guideline for Landslide Susceptibility, Hazard and Risk Zoning. Australian Geomechanics, Vol 42 No 1 March 2007

AGS (2007c). Practice Notes Guidelines for Landslide Risk Management. Australian Geomechanics Vol 42 No 1 March 2007

AGS (2007d). Commentary on Practice Notes Guidelines for Landslide Risk Management. Australian Geomechanics Vol 42 No 1 March 2007

AGS (2007e). The Australian Geoguides for Slope Management and Maintenance. Australian Geomechanics Vol 42 No 1 March 2007

AS1170 (2007). Australian Standard. Structural design actions. Part 4: Earthquake actions in Australia. prepared by Committee BD-006, General Design Requirements and Loading on Structures. It was approved on behalf of the Council of Standards Australia on 22 May 2007. This Standard was published on 9 October 2007.

AS1289 (2000). Australian Standard. Various methods as Prepared by Committee CE/9, Testing of Soils for Engineering Purposes. Approved on behalf of the Council of Standards Australia on 3 December 1999 and published on 28 February 2000.

AS1726 (2017). Australian Standard. Geotechnical Site Investigations. Approved on behalf of the Council of Standards Australia on 7 April 2017 and published on 2nd May 2017.

AS2870 (2011). Australian Standard. Residential slabs and footings. prepared by Committee BD-025, Residential Slabs and Footings. Approved on behalf of the Council of Standards Australia on 20 December 2010. This Standard was published on 17 January 2011.

AS4133 (2000). Australian Standard. Prepared by Committee CE/9, Testing of Soils for Engineering Purposes. Approved on behalf of the Council of Standards Australia on 3 December 1999 and published on 28 February 2000.

Calver, C.R. and Latinovic, M. (compilers) 2002. Digital Geological Atlas 1:25 000 Scale Series. Sheet 5224. Taroona. Mineral Resources Tasmania.

Tasmanian Government, Director's Determination – Landslip Hazard Areas. Version 1.0 6 February 2020.

APPENDIX 1 – Acceptable Solutions

Standard	Code	Acceptable Solution			Performance Criteria
Use	E3.6.1 Hazardous Use	A1	Hazardous use relates to an alteration or intensification of an approved use.		P1
		A2	No acceptable solution.		P2
	E3.6.2 Vulnerable Use	A1	Vulnerable use is for visitor accommodation.		A1
		A2	No acceptable solution.		A2
Development	E3.7.1 Buildings and Works, other than Minor Extensions	A1	No Acceptable solution		P1
		A1	Buildings and works for minor extensions must comply with the following: (a) be in a Medium Landslide Hazard Area.		P1
	E3.7.3 Major Works	A1	No acceptable solution.		P1
Subdivision	E3.8.1 Subdivision	A1	No Acceptable solution		P1
		A2	Subdivision is not prohibited by the relevant zone standards.		P2

APPENDIX 2 – Qualitative Risk Assessment Tables

Likelihood & Consequence Index

QUALITATIVE MEASURES OF LIKELIHOOD

Approximate Annual Probability		Implied Indicative Landslide Recurrence Interval		Description		Descriptor	Level
Indicative Value	Notional Boundary						
10^{-1}	5×10^{-2}	10 years	20 years 200 years 2000 years 20,000 years 200,000 years	The event is expected to occur over the design life.		ALMOST CERTAIN	A
10^{-2}		100 years		The event will probably occur under adverse conditions over the design life.		LIKELY	B
10^{-3}		1000 years		The event could occur under adverse conditions over the design life.		POSSIBLE	C
10^{-4}		10,000 years		The event might occur under very adverse circumstances over the design life.		UNLIKELY	D
10^{-5}		100,000 years		The event is conceivable but only under exceptional circumstances over the design life.		RARE	E
10^{-6}		1,000,000 years		The event is inconceivable or fanciful over the design life.		BARELY CREDIBLE	F

Note: (1) The table should be used from left to right; use Approximate Annual Probability or Description to assign Descriptor, not vice versa.

QUALITATIVE MEASURES OF CONSEQUENCES TO PROPERTY

Approximate Cost of Damage		Description		Descriptor	Level
Indicative Value	Notional Boundary				
200%	100% 60% 20% 5% 0.5%	Structure(s) completely destroyed and/or large scale damage requiring major engineering works for stabilisation. Could cause at least one adjacent property major consequence damage.		CATASTROPHIC	1
60%		Extensive damage to most of structure, and/or extending beyond site boundaries requiring significant stabilisation works. Could cause at least one adjacent property medium consequence damage.		MAJOR	2
20%		Moderate damage to some of structure, and/or significant part of site requiring large stabilisation works. Could cause at least one adjacent property minor consequence damage.		MEDIUM	3
5%		Limited damage to part of structure, and/or part of site requiring some reinstatement stabilisation works.		MINOR	4
0.5%		Little damage. (Note for high probability event (Almost Certain), this category may be subdivided at a notional boundary of 0.1%. See Risk Matrix.)		INSIGNIFICANT	5

Note: (2) The Approximate Cost of Damage is expressed as a percentage of market value, being the cost of the improved value of the unaffected property which includes the land plus the unaffected structures.

(3) The Approximate Cost is to be an estimate of the direct cost of the damage, such as the cost of reinstatement of the damaged portion of the property (land plus structures), stabilisation works required to render the site to tolerable risk level for the landslide which has occurred and professional design fees, and consequential costs such as legal fees, temporary accommodation. It does not include additional stabilisation works to address other landslides which may affect the property.

(4) The table should be used from left to right; use Approximate Cost of Damage or Description to assign Descriptor, not vice versa.

Qualitative Risk Matrix

QUALITATIVE RISK ANALYSIS MATRIX – LEVEL OF RISK TO PROPERTY

LIKELIHOOD		CONSEQUENCES TO PROPERTY (With Indicative Approximate Cost of Damage)				
		I: CATASTROPHIC 200%	2: MAJOR 60%	3: MEDIUM 20%	4: MINOR 5%	5: INSIGNIFICANT 0.5%
A - ALMOST CERTAIN	10^{-1}	SH	SH	SH	H	M or L (5)
B - LIKELY	10^{-2}	SH	SH	H	M	L
C - POSSIBLE	10^{-3}	SH	H	M	M	VL
D - UNLIKELY	10^{-4}	H	M	L	L	VL
E - RARE	10^{-5}	M	L	L	VL	VL
F - BARELY CREDIBLE	10^{-6}	L	VL	VL	VL	VL

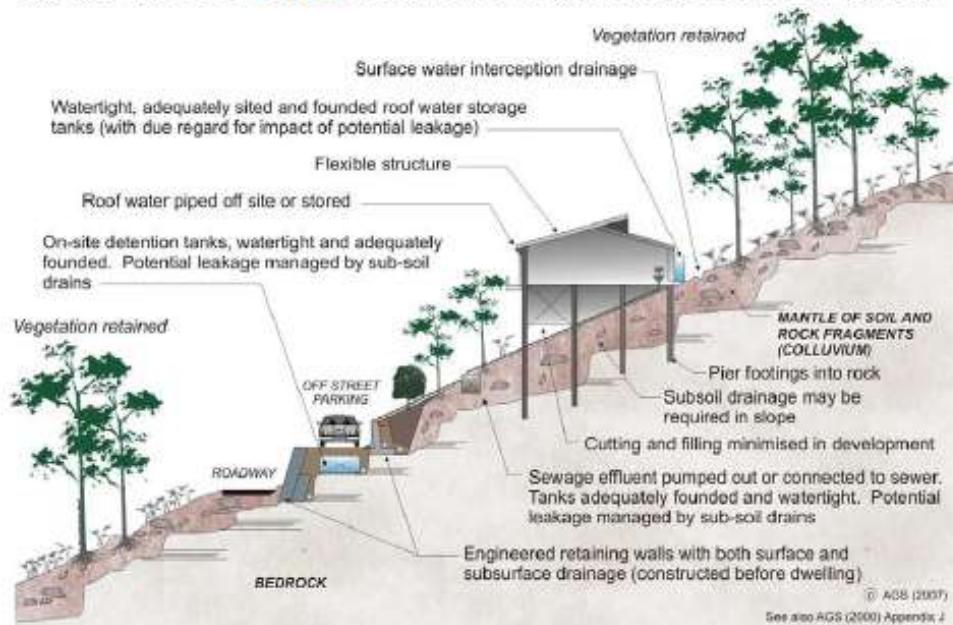
Note: (5) For Cell A.5, may be subdivided such that a consequence of less than 0.1% is Low Risk.

(6) When considering a risk assessment it must be clearly stated whether it is for existing conditions or with risk control measures which may not be implemented at the current time.

RISK LEVEL IMPLICATIONS

Risk Level		Example Implications (7)
SH	VERY HIGH RISK	Unacceptable without treatment. Extensive detailed investigation and research, planning and implementation of treatment options essential to reduce risk to Low; may be too expensive and not practical. Work likely to cost more than value of the property.
H	HIGH RISK	Unacceptable without treatment. Detailed investigation, planning and implementation of treatment options required to reduce risk to Low. Work would cost a substantial sum in relation to the value of the property.
M	MODERATE RISK	May be tolerated in certain circumstances (subject to regulator's approval) but requires investigation, planning and implementation of treatment options to reduce the risk to Low. Treatment options to reduce to Low risk should be implemented as soon as practicable.
L	LOW RISK	Usually acceptable to regulators. Where treatment has been required to reduce the risk to this level, ongoing maintenance is required.
VL	VERY LOW RISK	Acceptable. Manage by normal slope maintenance procedures.

Note: (7) The implications for a particular situation are to be determined by all parties to the risk assessment and may depend on the nature of the property at risk; these are only given as a general guide.


APPENDIX 3 - Australian Geomechanics Society (AGS) Landslide Risk

AUSTRALIAN GEOGUIDE LR8 (CONSTRUCTION PRACTICE)

HILLSIDE CONSTRUCTION PRACTICE

Sensible development practices are required when building on hillsides, particularly if the hillside has more than a low risk of instability (GeoGuide LR7). Only building techniques intended to maintain, or reduce, the overall level of landslide risk should be considered. Examples of good hillside construction practice are illustrated below.

EXAMPLES OF GOOD HILLSIDE CONSTRUCTION PRACTICE

WHY ARE THESE PRACTICES GOOD?

Roadways and parking areas - are paved and incorporate kerbs which prevent water discharging straight into the hillside (GeoGuide LR6).

Cuttings - are supported by retaining walls (GeoGuide LR8).

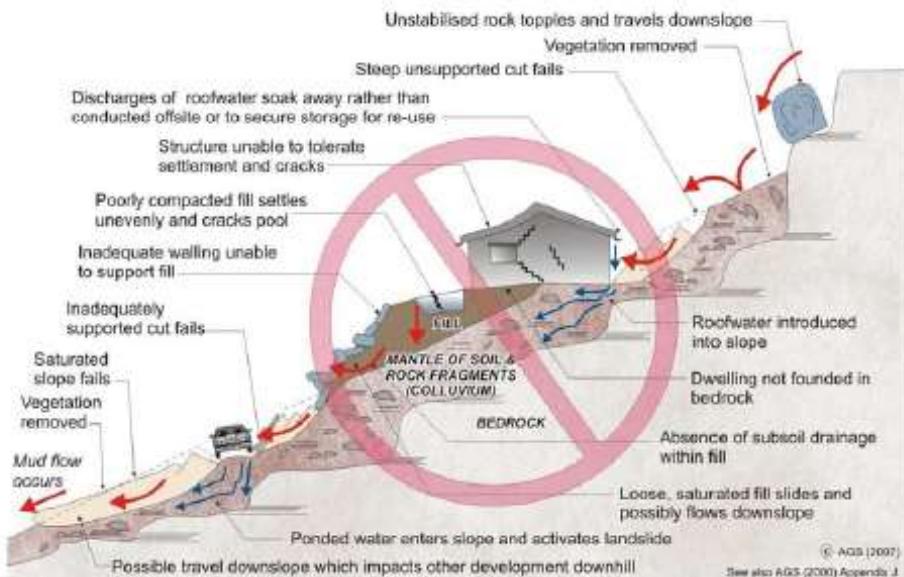
Retaining walls - are engineer designed to withstand the lateral earth pressures and surcharges expected, and include drains to prevent water pressures developing in the backfill. Where the ground slopes steeply down towards the high side of a retaining wall, the disturbing force (see GeoGuide LR8) can be two or more times that in level ground. Retaining walls must be designed taking these forces into account.

Sewage - whether treated or not is either taken away in pipes or contained in properly founded tanks so it cannot soak into the ground.

Surface water - from roofs and other hard surfaces is piped away to a suitable discharge point rather than being allowed to infiltrate into the ground. Preferably, the discharge point will be in a natural creek where ground water exits, rather than enters, the ground. Shallow, lined, drains on the surface can fulfil the same purpose (GeoGuide LR5).

Surface loads - are minimised. No fill embankments have been built. The house is a lightweight structure. Foundation loads have been taken down below the level at which a landslide is likely to occur and, preferably, to rock. This sort of construction is probably not applicable to soil slopes (GeoGuide LR3). If you are uncertain whether your site has rock near the surface, or is essentially a soil slope, you should engage a geotechnical practitioner to find out.

Flexible structures - have been used because they can tolerate a certain amount of movement with minimal signs of distress and maintain their functionality.


Vegetation clearance - on soil slopes has been kept to a reasonable minimum. Trees, and to a lesser extent smaller vegetation, take large quantities of water out of the ground every day. This lowers the ground water table, which in turn helps to maintain the stability of the slope. Large scale clearing can result in a rise in water table with a consequent increase in the likelihood of a landslide (GeoGuide LR5). An exception may have to be made to this rule on steep rock slopes where trees have little effect on the water table, but their roots pose a landslide hazard by dislodging boulders.

Possible effects of ignoring good construction practices are illustrated on page 2. Unfortunately, these poor construction practices are not as unusual as you might think and are often chosen because, on the face of it, they will save the developer, or owner, money. You should not lose sight of the fact that the cost and anguish associated with any one of the disasters illustrated, is likely to more than wipe out any apparent savings at the outset.

ADOPT GOOD PRACTICE ON HILLSIDE SITES

AUSTRALIAN GEOGUIDE LR8 (CONSTRUCTION PRACTICE)

EXAMPLES OF POOR HILLSIDE CONSTRUCTION PRACTICE

WHY ARE THESE PRACTICES POOR?

Roadways and parking areas - are unsurfaced and lack proper table drains (gutters) causing surface water to pond and soak into the ground.

Cut and fill - has been used to balance earthworks quantities and level the site leaving unstable cut faces and added large surface loads to the ground. Failure to compact the fill properly has led to settlement, which will probably continue for several years after completion. The house and pool have been built on the fill and have settled with it and cracked. Leakage from the cracked pool and the applied surface loads from the fill have combined to cause landslides.

Retaining walls - have been avoided, to minimise cost, and hand placed rock walls used instead. Without applying engineering design principles, the walls have failed to provide the required support to the ground and have failed, creating a very dangerous situation.

A heavy, rigid, house - has been built on shallow, conventional, footings. Not only has the brickwork cracked because of the resulting ground movements, but it has also become involved in a man-made landslide.

Soak-away drainage - has been used for sewage and surface water run-off from roofs and pavements. This water soaks into the ground and raises the water table (GeoGuide LR5). Subsoil drains that run along the contours should be avoided for the same reason. If felt necessary, subsoil drains should run steeply downhill in a chevron, or herring bone, pattern. This may conflict with the requirements for effluent and surface water disposal (GeoGuide LR9) and if so, you will need to seek professional advice.

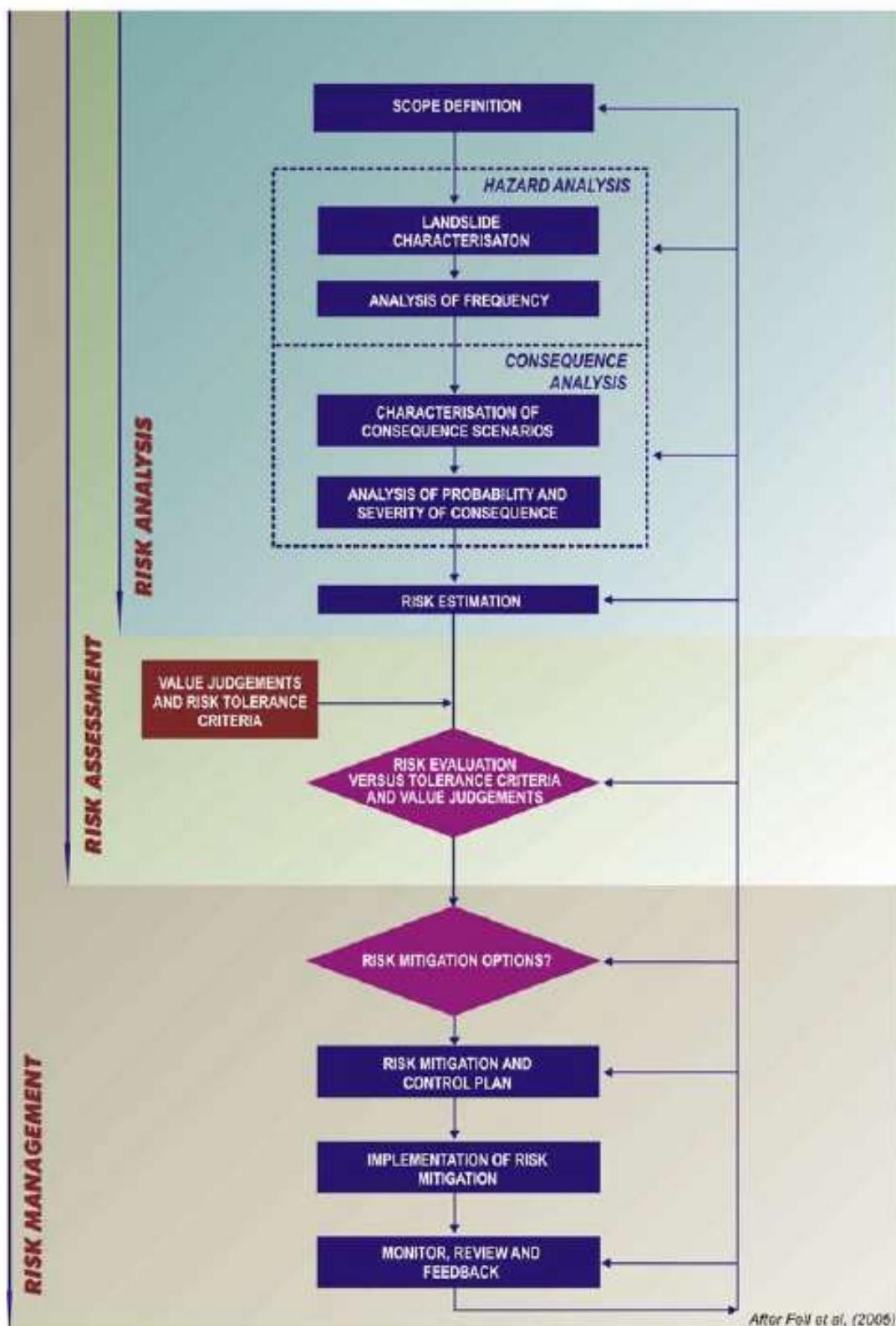
Rock debris - from landslides higher up on the slope seems likely to pass through the site. Such locations are often referred to by geotechnical practitioners as "debris flow paths". Rock is normally even denser than ordinary fill, so even quite modest boulders are likely to weigh many tonnes and do a lot of damage once they start to roll. Boulders have been known to travel hundreds of metres downhill leaving behind a trail of destruction.

Vegetation - has been completely cleared, leading to a possible rise in the water table and increased landslide risk (GeoGuide LR5).

DON'T CUT CORNERS ON HILLSIDE SITES - OBTAIN ADVICE FROM A GEOTECHNICAL PRACTITIONER

More information relevant to your particular situation may be found in other Australian GeoGuides:

- GeoGuide LR1 - Introduction
- GeoGuide LR2 - Landslides
- GeoGuide LR3 - Landslides in Soil
- GeoGuide LR4 - Landslides in Rock
- GeoGuide LR5 - Water & Drainage
- GeoGuide LR6 - Retaining Walls
- GeoGuide LR7 - Landslide Risk
- GeoGuide LR9 - Effluent & Surface Water Disposal
- GeoGuide LR10 - Coastal Landslides
- GeoGuide LR11 - Record Keeping


The Australian GeoGuides (LR series) are a set of publications intended for property owners; local councils; planning authorities; developers; insurers; lawyers and, in fact, anyone who lives with, or has an interest in, a natural or engineered slope, a cutting, or an excavation. They are intended to help you understand why slopes and retaining structures can be a hazard and what can be done with appropriate professional advice and local council approval (if required) to remove, reduce, or minimise the risk they represent. The GeoGuides have been prepared by the [Australian Geomechanics Society](#), a specialist technical society within Engineers Australia, the national peak body for all engineering disciplines in Australia, whose members are professional geotechnical engineers and engineering geologists with a particular interest in ground engineering. The GeoGuides have been funded under the Australian governments' National Disaster Mitigation Program.

PRACTICE NOTE GUIDELINES FOR LANDSLIDE RISK MANAGEMENT 2007

APPENDIX G - SOME GUIDELINES FOR HILLSIDE CONSTRUCTION

GOOD ENGINEERING PRACTICE		POOR ENGINEERING PRACTICE
ADVICE		
GEOTECHNICAL ASSESSMENT	Obtain advice from a qualified, experienced geotechnical practitioner at early stage of planning and before site works.	Prepare detailed plan and start site works before geotechnical advice.
PLANNING		
SITE PLANNING	Having obtained geotechnical advice, plan the development with the risk arising from the identified hazards and consequences in mind.	Plan development without regard for the Risk.
DESIGN AND CONSTRUCTION		
HOUSE DESIGN	Use flexible structures which incorporate properly designed brickwork, timber or steel frames, timber or panel cladding. Consider use of split levels. Use decks for recreational areas where appropriate.	Floor plans which require extensive cutting and filling. Movement intolerant structures.
SITE CLEARING	Retain natural vegetation wherever practicable.	Indiscriminately clear the site.
ACCESS & DRIVEWAYS	Satisfy requirements below for cuts, fills, retaining walls and drainage. Council specifications for grades may need to be modified. Driveways and parking areas may need to be fully supported on piers.	Excavate and fill for site access before geotechnical advice.
EARTHWORKS	Retain natural contours wherever possible.	Indiscriminatory bulk earthworks.
CUTS	Minimise depth. Support with engineered retaining walls or batter to appropriate slope. Provide drainage measures and erosion control.	Large scale cuts and benching. Unsupported cuts. Ignore drainage requirements
FILLS	Minimise height. Strip vegetation and topsoil and key into natural slopes prior to filling. Use clean fill materials and compact to engineering standards. Batter to appropriate slope or support with engineered retaining wall. Provide surface drainage and appropriate subsurface drainage.	Loose or poorly compacted fill, which if it fails, may flow a considerable distance including onto property below. Block natural drainage lines. Fill over existing vegetation and topsoil. Include stumps, trees, vegetation, topsoil, boulders, building rubble etc in fill.
ROCK OUTCROPS & BOULDERS	Remove or stabilise boulders which may have unacceptable risk. Support rock faces where necessary.	Disturb or undercut detached blocks or boulders.
RETAINING WALLS	Engineer design to resist applied soil and water forces. Found on rock where practicable. Provide subsurface drainage within wall backfill and surface drainage on slope above. Construct wall as soon as possible after cut/fill operation.	Construct a structurally inadequate wall such as sandstone flagging, brick or unreinforced blockwork. Lack of subsurface drains and weepholes.
FOOTINGS	Found within rock where practicable. Use rows of piers or strip footings oriented up and down slope. Design for lateral creep pressures if necessary. Backfill footing excavations to exclude ingress of surface water.	Found on topsoil, loose fill, detached boulders or undercut cliffs.
SWIMMING POOLS	Engineer designed. Support on piers to rock where practicable. Provide with under-drainage and gravity drain outlet where practicable. Design for high soil pressures which may develop on uphill side whilst there may be little or no lateral support on downhill side.	
DRAINAGE	Provide at tops of cut and fill slopes. Discharge to street drainage or natural water courses. Provide general falls to prevent blockage by siltation and incorporate silt traps. Line to minimise infiltration and make flexible where possible. Special structures to dissipate energy at changes of slope and/or direction.	Discharge at top of fills and cuts. Allow water to pond on bench areas.
SURFACE	Provide filter around subsurface drain. Provide drain behind retaining walls. Use flexible pipelines with access for maintenance. Prevent inflow of surface water.	Discharge roof runoff into absorption trenches.
SUBSURFACE	Usually requires pump-out or mains sewer systems; absorption trenches may be possible in some areas if risk is acceptable. Storage tanks should be water-tight and adequately founded.	Discharge sullage directly onto and into slopes. Use absorption trenches without consideration of landslide risk.
SEPTIC & SULLAGE	Control erosion as this may lead to instability. Revegetate cleared area.	Failure to observe earthworks and drainage recommendations when landscaping.
EROSION CONTROL & LANDSCAPING		
DRAWINGS AND SITE VISITS DURING CONSTRUCTION		
DRAWINGS	Building Application drawings should be viewed by geotechnical consultant	
SITE VISITS	Site Visits by consultant may be appropriate during construction/	
INSPECTION AND MAINTENANCE BY OWNER		
OWNER'S RESPONSIBILITY	Clean drainage systems; repair broken joints in drains and leaks in supply pipes. Where structural distress is evident see advice. If seepage observed, determine causes or seek advice on consequences.	

FRAMEWORK FOR LANDSLIDE RISK MANAGEMENT

After Fell et al. (2006)

APPENDIX B - LANDSLIDE TERMINOLOGY

The following provides a summary of landslide terminology which should (for uniformity of practice) be adopted when classifying and describing a landslide. It has been based on Cruden & Varnes (1996) and the reader is recommended to refer to the original documents for a more detailed discussion, other terminology and further examples of landslide types and processes.

Landslide

The term *landslide* denotes “the movement of a mass of rock, debris or earth down a slope”. The phenomena described as landslides are not limited to either the “land” or to “sliding”, and usage of the word has implied a much more extensive meaning than its component parts suggest. Ground subsidence and collapse are excluded.

Classification of Landslides

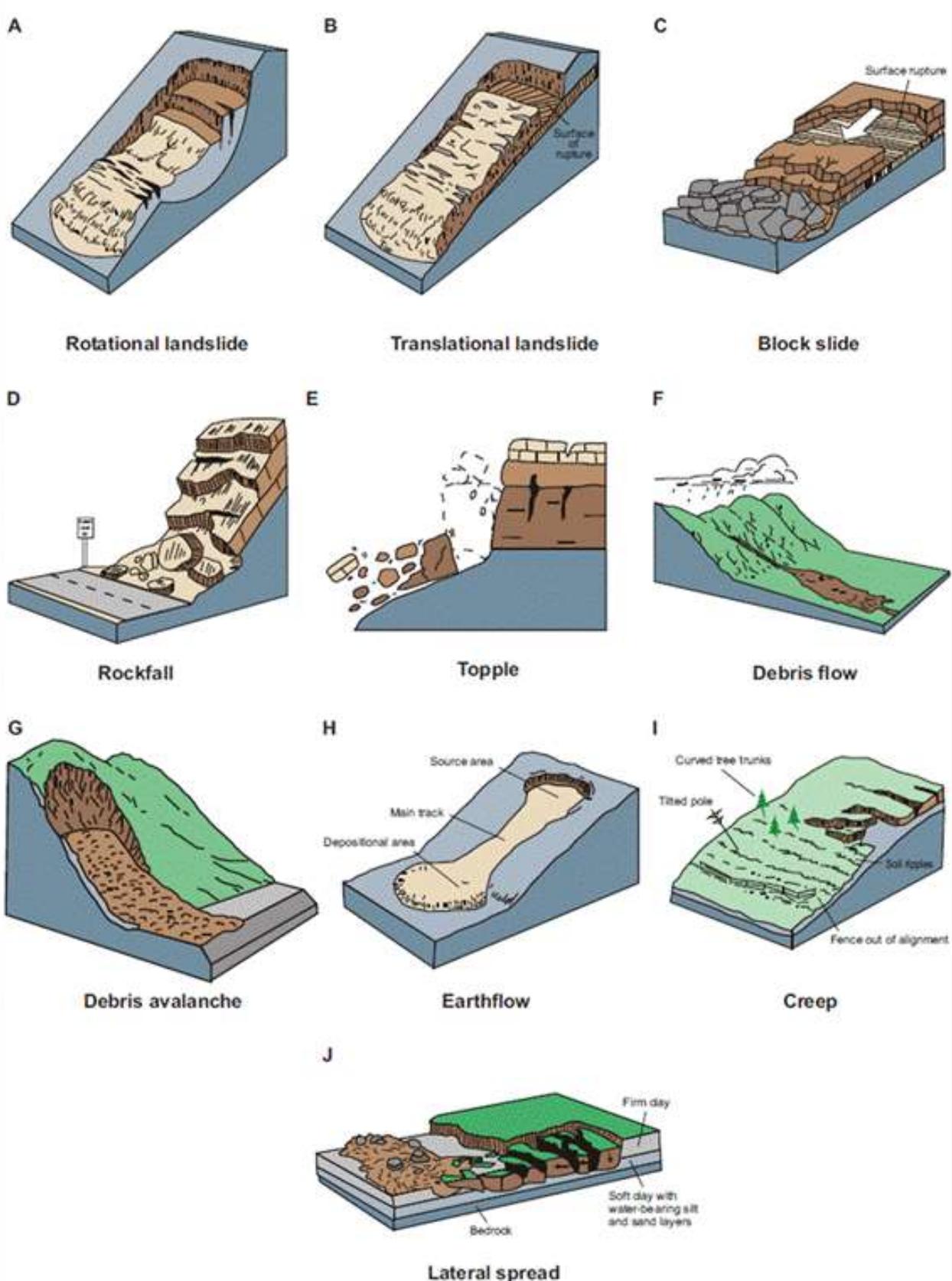
Landslide classification is based on Varnes (1978) system which has two terms: the first term describes the material type and the second term describes the type of movement.

The material types are *Rock*, *Earth* and *Debris*, being classified as follows:-

The material is either rock or soil.

- Rock*: is “a hard or firm mass that was intact and in its natural place before the initiation of movement.”
- Soil*: is “an aggregate of solid particles, generally of minerals and rocks, that either was transported or was formed by the weathering of rock in place. Gases or liquids filling the pores of the soil form part of the soil.”
- Earth*: “describes material in which 80% or more of the particles are smaller than 2 mm, the upper limit of sand sized particles.”
- Debris*: “contains a significant proportion of coarse material; 20% to 80% of the particles are larger than 2 mm and the remainder are less than 2 mm.”

The terms used should describe the displaced material in the landslide before it was displaced.


The types of movement describe how the landslide movement is distributed through the displaced mass. The five kinematically distinct types of movement are described in the sequence *fall*, *topple*, *slide*, *spread* and *flow*.

The following table shows how the two terms are combined to give the landslide type:

Table B1: Major types of landslides. Abbreviated version of Varnes' classification of slope movements (Varnes, 1978).

TYPE OF MOVEMENT		TYPE OF MATERIAL		
		BEDROCK	ENGINEERING SOILS	
SLIDES	ROTATIONAL	Predominantly Coarse	Predominantly Fine	
	TRANSLATIONAL			
	FALLS	Rock fall	Debris fall	Earth fall
	TOPPLES	Rock topple	Debris topple	Earth topple
	SLIDES	Rock slide	Debris slide	Earth slide
	LATERAL SPREADS	Rock spread	Debris spread	Earth spread
	FLOWS	Rock flow (Deep creep)	Debris flow (Soil creep)	Earth flow
	COMPLEX	Combination of two or more principle types of movement		

Figure B1 gives schematics to illustrate the major types of landslide movement. Further information and photographs of landslides are available on the USGS website at <http://landslides.usgs.gov>.

APPENDIX 4 - Qualitative Risk Assessment

Performance Criteria E3.7.1 P1 Buildings and works must satisfy all of the following:	Relevance	Management Options	Managed (treated) Risk Assessment			Further Assessment Required
			Consequence	Likelihood	Risk	
(a) no part of the buildings and works is in a High Landslide Hazard Area;	N/A					
(b) the landslide risk associated with the buildings and works is either: (i) acceptable risk (means a risk society is prepared to accept as it is. That is; without management or treatment); or (ii) capable of feasible and effective treatment through hazard management measures, so as to be tolerable risk. The residual tolerable risk may be assessed using either qualitative or quantitative methods in the landslide risk assessment either: (a) if using the AGS qualitative risk assessment method apply the "As Low As Reasonably Possible (ALARP)" principle with the residual tolerable risk level no higher than a "moderate" risk level under the AGS 2007(c) risk method; or (b) if using the AGS quantitative risk assessment method then the tolerable loss of life for the person most at risk as suggested by the AGS 2007(c) to be: (i) if existing slope / existing development: 10-4 / annum; (ii) if new constructed slope / new development / existing landslide: 10-5 / annum.	Capable of feasible and effective treatment through hazard management measures	Refer Recommendations to	Minor	Unlikely	Low	N/A

Performance Criteria E3.7.3 P1 Major works must satisfy all of the following (same as 3.7.1P3):	Relevance	Management Options	Managed (treated) Risk Assessment			Further Assessment Required
			Consequence	Likelihood	Risk	
(a) no part of the works is in a High Landslide Hazard Area; (b)the landslide risk associated with the works is either: (i) acceptable risk; or (ii)capable of feasible and effective treatment through hazard management measures, so as to be tolerable risk.	Capable of feasible and effective treatment through hazard management measures	Refer Recommendations to	Minor	Unlikely	Low	N/A